Skip Nav Destination
Article navigation
Volume 64, Issue 10
October 2023
- Previous Article
- Next Article
Research Article| October 16 2023
Zhaobing Fan
;
Zhaobing Fan a)
(Writing – original draft)
Harbin Engineering University
, Harbin,
China
Search for other works by this author on:
This Site
Jicheng Geng
;
Jicheng Geng b)
(Writing – original draft)
Harbin Engineering University
, Harbin,
China
Search for other works by this author on:
This Site
Shaolong Han
Shaolong Han c)
(Writing – original draft)
Harbin Engineering University
, Harbin,
China
c)Author to whom correspondence should be addressed: algebra@hrbeu.edu.cn
Search for other works by this author on:
This Site
Author & Article Information
c)Author to whom correspondence should be addressed: algebra@hrbeu.edu.cn
a)
Electronic mail: fanzhaobing@hrbeu.edu.cn
b)
Electronic mail: jcgeng@hrbeu.edu.cn
J. Math. Phys. 64, 101703 (2023)
Article history
Received:
July 02 2023
Accepted:
September 28 2023
-
- Views Icon Views
- Article contents
- Figures & tables
- Video
- Audio
- Supplementary Data
- Peer Review
- Tools Icon Tools
Cite Icon Cite
- Search Site
Citation
Zhaobing Fan, Jicheng Geng, Shaolong Han; Differential operator realization of braid group action on ıquantum groups. J. Math. Phys. 1 October 2023; 64 (10): 101703. https://doi.org/10.1063/5.0166060
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
We construct a unique braid group action on deformed q-Weyl algebra . Under this action, we give a realization of the braid group action on quasi-split ıquantum groups of type AIII. Furthermore, we directly construct a unique braid group action on polynomial ring which is compatible with the braid group action on and .
Topics
Associative algebra, Algebraic structures, Representation theory
REFERENCES
1.
V. G. Drinfel’d
Quantum groups
,”
J. Sov. Math.
41
,
898
–
915
(
1988
).
2.
M. Jimbo
A q-difference analogue of and the Yang-Baxter equation
,”
Lett. Math. Phys.
10
,
63
–
69
(
1985
).
3.
G. Lusztig
Finite dimensional hopf algebras arising from quantized universal enveloping algebras
,”
J. Am. Math. Soc.
3
,
257
–
296
(
1990
).
4.
G. Lusztig
Quantum groups at roots of 1
,”
Geom. Dedicata
35
,
89
–
113
(
1990
).
5.
G. Lusztig
Introduction to Quantum Groups
(
Springer Science and Business Media
,
2010
).
6.
V. G. Drinfel’d
A new realization of Yangians and quantized affine algebras
,”
Sov. Math. Dokl.
32
,
212
–
216
(
1988
).
7.
I. Damiani
A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of
,”
J. Algebra
161
,
291
–
310
(
1993
).
8.
J. Beck
Braid group action and quantum affine algebras
,”
Commun. Math. Phys.
165
,
555
–
568
(
1994
).
9.
G. Letzter
Symmetric pairs for quantized enveloping algebras
,”
J. Algebra
220
,
729
–
767
(
1999
).
10.
S. Kolb
Quantum symmetric Kac–Moody pairs
,”
Adv. Math.
267
,
395
–
469
(
2014
).
11.
S. Kolb J. Pellegrini
Braid group actions on coideal subalgebras of quantized enveloping algebras
,”
J. Algebra
336
,
395
–
416
(
2011
).
12.
L. Dobson
Braid group actions for quantum symmetric pairs of type AIII/AIV
,”
J. Algebra
564
,
151
–
198
(
2020
).
13.
M. Lu W. Wang
Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
,”
Sel. Math.
28
,
84
(
2022
).
14.
W. Wang W. Zhang
An intrinsic approach to relative braid group symmetries on ıquantum groups
,” in
Proceedings of the London Mathematical Society
(London Mathematical Society,
2023
).
15.
W. Zhang
Relative braid group symmetries on ıquantum groups of Kac–Moody type
,”
Sel. Math.
29
,
59
(
2023
).
16.
M. Lu W. Wang
A drinfeld type presentation of affine ıquantum groups I: Split ADE type
,”
Adv. Math.
393
,
108111
(
2021
).
17.
M. Lu W. Wang W. Zhang
Braid group action and quasi-split affine ıquantum groups I
,” arXiv:2203.11286 (
2022
).
18.
W. Zhang
A Drinfeld-type presentation of affine ıquantum groups II: Split BCFG type
,”
Lett. Math. Phys.
112
,
89
(
2022
).
19.
T. Hayashi
Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras
,”
Commun. Math. Phys.
127
,
129
–
144
(
1990
).
20.
R. Floreanini D. A. Leites L. Vinet
On the defining relations of quantum superalgebras
,”
Lett. Math. Phys.
23
,
127
–
131
(
1991
).
21.
R. Floreanini V. P. Spiridonov L. Vinet
q-oscillator realizations of the quantum superalgebras slq(m, n) and ospq(m, 2n)
,”
Commun. Math. Phys.
137
,
149
–
160
(
1991
).
22.
E. D’Hoker R. Floreanini L. Vinet
q-oscillator realizations of the metaplectic representation of quantum osp(3, 2)
,”
J. Math. Phys.
32
,
1427
–
1429
(
1991
).
23.
V. K. Dobrev
Invariant differential operators for non-compact Lie groups: The main su(n, n) cases
,”
Phys. At. Nucl.
76
,
983
–
990
(
2013
).
24.
V. K. Dobrev
Multiplet classification for SU(n,n)
,”
J. Phys.: Conf. Ser.
563
,
012008
(
2014
).
25.
H. Bao W. Wang
A New Approach to Kazhdan-Lusztig Theory of Type B Via Quantum Symmetric Pairs
(
Société Mathématique de France
,
Paris
,
2018
).
26.
Z. Fan J. Geng S. Han
Differential operator approach to ıquantum groups and their oscillator representations
,” arXiv:2203.03900 (
2022
).
27.
R. Floreanini L. Vinet
Braid group action on the q-Weyl algebra
,”
Lett. Math. Phys.
23
,
151
–
158
(
1991
).
© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Reset password
Register
Sign in via your Institution
Pay-Per-View Access
$40.00
Buy This Article
106 Views
View Metrics
Citing articles via
Google Scholar
Sign up for alerts
- Most Read
- Most Cited
Almost synchronous quantum correlations
Thomas Vidick
Modified gravity: A unified approach to metric-affine models
Christian G. Böhmer, Erik Jensko
Topological recursion of the Weil–Petersson volumes of hyperbolic surfaces with tight boundaries
Timothy Budd, Bart Zonneveld
Related Content
Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups
J. Math. Phys. (May 2020)
Relative Yetter-Drinfeld modules and comodules over braided groups
J. Math. Phys. (April 2015)
On the structure of quantum vertex algebras
J. Math. Phys. (January 2020)
Braid group representations from a deformation of the harmonic oscillator algebra
J. Math. Phys. (November 2016)
Integrable perturbations of conformal field theories and Yetter-Drinfeld modules
J. Math. Phys. (November 2014)